Filtrer
Rayons
Éditeurs
Langues
Dans la Musette
-
Dans la Musette 2.0 : le Tour de LA France
Dans la Musette
- Marabout
- Beaux-Livres Sport
- 15 Novembre 2023
- 9782501186179
Les joyeux drilles de « Dans la Musette » enflamment avec brio et constance le PCF (Paysage cycliste français), un peu comme Pierre Rolland anime une étape du Tour de France. Avec panache !
Mais c'est plus précisément un Tour de LA France cycliste qu'ils proposent dans ce nouvel ouvrage. Toutes les régions françaises sont passées au crible de leur plume acérée et à l'aune de leur contribution respective à la Grande Histoire du bicloune
« made in France ». De Bobet au « Blaireau » et de Thévenet à Pinot, suivez l'échappée du siècle avec « Dans la Musette » aux commentaires.
La meilleure édition du Tour de La France de tous les temps, un concentré de culture et d'humour vélocyclopédiques. -
Nonlinear differential or difference equations are encountered not only in mathematics, but also in many areas of physics (evolution equations, propagation of a signal in an optical fiber), chemistry (reaction-diffusion systems), and biology (competition of species).
This book introduces the reader to methods allowing one to build explicit solutions to these equations. A prerequisite task is to investigate whether the chances of success are high or low, and this can be achieved without any a priori knowledge of the solutions, with a powerful algorithm presented in detail called the Painlevé test. If the equation under study passes the Painlevé test, the equation is presumed integrable. If on the contrary the test fails, the system is nonintegrable or even chaotic, but it may still be possible to find solutions.
The examples chosen to illustrate these methods are mostly taken from physics. These include on the integrable side the nonlinear Schrdinger equation (continuous and discrete), the Korteweg-de Vries equation, the Hénon-Heiles Hamiltonians, on the nonintegrable side the complex Ginzburg-Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto-Sivashinsky equation (phase turbulence), the Kolmogorov-Petrovski-Piskunov equation (KPP, a reaction-diffusion model), the Lorenz model of atmospheric circulation and the Bianchi IX cosmological model.
Written at a graduate level, the book contains tutorial text as well as detailed examples and the state of the art on some current research. -
This book, now in its second edition, introduces the singularity analysis of differential and difference equations via the Painlevé test and shows how Painlevé analysis provides a powerful algorithmic approach to building explicit solutions to nonlinear ordinary and partial differential equations. It is illustrated with integrable equations such as the nonlinear Schrdinger equation, the Korteweg-de Vries equation, Hénon-Heiles type Hamiltonians, and numerous physically relevant examples such as the Kuramoto-Sivashinsky equation, the Kolmogorov-Petrovski-Piskunov equation, and mainly the cubic and quintic Ginzburg-Landau equations. Extensively revised, updated, and expanded, this new edition includes: recent insights from Nevanlinna theory and analysis on both the cubic and quintic Ginzburg-Landau equations; a close look at physical problems involving the sixth Painlevé function; and an overview of new results since the book's original publication with special focus on finite difference equations. The book features tutorials, appendices, and comprehensive references, and will appeal to graduate students and researchers in both mathematics and the physical sciences.